viernes, 21 de agosto de 2009






Ley de Lenz
El sentido de la corriente que circula por la espira del experimento de Faraday-Henry se define según la llamada ley de Lenz (por el físico estonio Heinrich Lenz, 1804- 1865): la corriente inducida por un campo magnético variable adopta el sentido por el cual tiende a oponerse a la causa que la provoca.


Según la ley de Lenz, al acercar el imán al circuito se genera una corriente que induce un campo magnético que repele al imán (a). Cuando la barra imantada se aleja (b), la corriente generada engendra un campo que tiende a atraer al imán hacia el circuito


Unificación de las leyes de Faraday y Lenz
Para unir las leyes de Lenz y Faraday en un único principio se define el concepto de espira orientada que es aquella en la que se ha establecido una cara privilegiada, llamada principal o positiva, donde se orienta el vector superficie . Entonces:
La f.e.m. inducida en la espira es positiva cuando la corriente generada tiene el sentido de las agujas del reloj, y negativa en sentido contrario.
El flujo magnético que atraviesa una espira orientada es igual a , siempre que sea el vector representativo de la cara positiva.
Energía magnética almacenada en un solenoide
Una consecuencia interesante de las leyes de Faraday y Lenz es la posibilidad de calcular la energía magnética que puede almacenar un solenoide dentro de un circuito. Esta energía viene dada por la expresión:




siendo L el coeficiente de autoinducción e I0 el régimen de intensidad o valor de la corriente que se alcanza después de cerrar el circuito.

Unidad de flujo magnético

El campo magnético cambia de signo cuando se pasa de una cara a otra de la espira, ya que se modifica entonces el sentido de su vector de superficie representativo (en la dirección perpendicular).
El flujo magnético se mide en el Sistema Internacional en una unidad llamada weber (símbolo Wb), que equivale a un campo magnético de un tesla (T) aplicado sobre una superficie de un metro cuadrado. Es decir: 1 Wb = 1 T / 1 m 2 .

El campo magnético cambia de signo cuando se pasa de una cara a otra de la espira, ya que se modifica entonces el sentido de su vector de superficie representativo (en la dirección perpendicular
Inducción mutua
Cuando se sitúan próximos dos circuitos eléctricos por los que fluye una corriente variable, cada uno induce en el otro una f.e.m. que, según la ley de Lenz, tiende a oponerse a la f.e.m. que
genera la corriente original del circuito. Este fenómeno se conoce como inducción mutua)
Autoinducción
Cuando por un circuito aislado fluye una corriente eléctrica variable, se engendra un campo magnético también variable que induce, a su vez, una corriente eléctrica sobre el propio circuito. La f.e.m. inducida tiende a oponerse a la original del circuito, en un fenómeno llamado autoinducción.Un solenoide con un número total de espiras N, un número de espiras por unidad de longitud n y un área de espira A tiene un coeficiente de autoinducción L = m0NnA. El coeficiente de autoinducción se mide en henrios (símbolo H).
Laura Churi

LEY DE FARADAY

La Ley de inducción electromagnética de Faraday (o simplemente Ley de Faraday) se basa en los experimentos que Michael Faraday realizó en 1831 y establece que el voltaje inducido en un circuito cerrado es directamente proporcional a la rapidez con que cambia en el tiempo el flujo magnético que atraviesa una superficie cualquiera con el circuito como borde



donde es el campo eléctrico, es el elemento infinitesimal del contorno C, es la densidad de campo magnético y S es una superficie arbitraria, cuyo borde es C. Las direcciones del contorno C y de están dadas por la regla de la mano izquierda.
La permutación de la integral de superficie y la derivada temporal se puede hacer siempre y cuando la superficie de integración no cambie con el tiempo.
Por medio del teorema de Stokes puede obtenerse una forma diferencial de esta ley:

Ésta es una de las ecuaciones de Maxwell, las cuales conforman las ecuaciones fundamentales del electromagnetismo. La ley de Faraday, junto con las otras leyes del electromagnetismo, fue incorporada en las ecuaciones de Maxwell, unificando así al electromagnetismo.
En el caso de un inductor con N vueltas de alambre, la fórmula anterior se transforma en:

donde es la fuerza electromotriz inducida y dΦ/dt es la tasa de variación temporal del flujo magnético Φ. La dirección de la fuerza electromotriz (el signo negativo en la fórmula) se debe a la ley de Lenz.
Natalia Aldao 6to de Agronomia

LEY DE FARADAY LENZ



¿Cuáles de las siguientes proposiciones son correctas?


Si el campo magnético es constante no puede haber efectos de inducción sobre un circuito


El flujo del campo magnético a través de una superficie S siempre es cero


Un circuito siempre se opondrá a cualquier causa que produzca una variación en el flujo magnético que lo atraviesa


Cuando pasa por un circuito una corriente eléctrica constante nunca se producirá efecto de autoinducciónCheck


¿Cómo circula la corriente eléctrica por la espira B si la intensidad que recorre la espira 1 va aumentando linealmente en el tiempo?



? Va en el mismo sentido que la que recorre A y también aumenta en el tiempo


? Va en el sentido opuesto a la que recorre A y también aumenta en el tiempo


? Va en el mismo sentido que la que recorre A y es constante en el tiempo


? Va en el sentido opuesto que la que recorre A y es constante en el tiempo


La espira que se te muestra en la figura está girando respecto al eje horizontal en un campo magnético constante. ¿Cómo es la corriente que se induce en ella?


? Constante


? Crece linealmente en el tiempo


? Varía sinusoidalmente
RAMIRO MARTINEZ 6º AGRONOMIA

miércoles, 12 de agosto de 2009

Campo magnético

El campo magnético es una región del espacio en la cual una carga eléctrica puntual de valor q que se desplaza a una velocidad , sufre los efectos de una fuerza que es perpendicular y proporcional tanto a la velocidad como al campo, llamada inducción magnética o densidad de flujo magnético. Así, dicha carga percibirá una fuerza descrita con la siguiente igualdad.
(Nótese que tanto F como v y B son magnitudes vectoriales y el producto cruz es un producto vectorial que tiene como resultante un vector perpendicular tanto a v como a B). El módulo de la fuerza resultante será
La existencia de un campo magnético se pone de relieve gracias a la propiedad localizada en el espacio de orientar un magnetómetro (laminilla de acero imantado que puede girar libremente). La aguja de una brújula, que evidencia la existencia del campo magnético terrestre, puede ser considerada un magnetómetro.

Uso

El campo H se ha considerado tradicionalmente el campo principal, ya que se puede relacionar con unas cargas, masas o polos magnéticos por medio de una ley similar a la de Coulomb para la electricidad. Maxwell, por ejemplo, utilizó este enfoque, aunque aclarando que esas cargas eras ficticias. Con ello, no solo se parte de leyes similares en los campos eléctricos y magnéticos (incluyendo la posibilidad de definir un potencial escalar magnético), sino que en medios materiales, con la equiparación matemáticas de H con E y de B con D se pueden establecer paralelismos útiles en las condiciones de contorno y las relaciones termodinámicas (en el sistema electromagnético de Gauss):

En electrotecnia no es raro que se conserve este punto de vista porque resulta práctico.
Con la llegada de las teorías del electrón de Lorentz y Poincaré, y de la relatividad de Einstein, quedó claro que estos paralelismos no se corresponden con la realidad física de los fenómenos, por lo que hoy es frecuente, sobre todo en física, que el nombre de campo magnético se aplique a B (por ejemplo, en los textos de Alonso-Finn y de Feynman).[1] En la formulación relativista del electromagnetismo, E no se agrupa con H para el tensor de intensidades, sino con B.
En 1944, F. Rasetti preparó un experimento para dilucidar cuál de los dos campos era el fundamental, es decir, aquel que actúa sobre una carga en movimiento, y el resultado fue que el campo magnético real era B y no H.[2]
Para caracterizar H y B se ha recurrido a varias distinciones. Así, H describe cuan intenso es el campo magnético en la región que afecta, mientras que B es la cantidad de flujo magnético por unidad de área que aparece en esa misma región. Otra distinción que se hace en ocasiones es que H se refiere al campo en función de sus fuentes (las corrientes eléctricas) y B al campo en función de sus efectos (fuerzas sobre las cargas).

Fuentes del campo magnético
Un campo magnético tiene dos fuentes que lo originan. Una de ellas es una corriente eléctrica de convección, que da lugar a un campo magnético estático. Por otro lado una corriente de desplazamiento origina un campo magnético variante en el tiempo, incluso aunque aquella sea estacionaria.
La relación entre el campo magnético y una corriente eléctrica está dada por la ley de Ampère. El caso más general, que incluye a la corriente de desplazamiento, lo da la ley de Ampère-Maxwell.

Campo magnético producido por una carga puntual [editar]
El campo magnético generado por una única carga en movimiento (no por una corriente eléctrica) se calcula a partir de la siguiente expresión:
Donde . Esta última expresión define un campo vectorial solenoidal, para distribuciones de cargas en movimiento la expresión es diferente, pero puede probarse que el campo magnético sigue siendo un campo solenoidal.

Propiedades del campo magnético
La inexistencia de cargas magnéticas lleva a que el campo magnético es un campo solenoidal lo que lleva a que localmente puede ser derivado de un potencial vector , es decir:
A su vez este potencial vector puede ser relacionado con el vector densidad de corriente mediante la relación:

Inexistencia de cargas magnéticas aisladas [editar]
Cabe destacar que, a diferencia del campo eléctrico, en el campo magnético no se ha comprobado la existencia de monopolos magnéticos, sólo dipolos magnéticos, lo que significa que las líneas de campo magnético son cerradas, esto es, el número neto de líneas de campo que entran en una superficie es igual al número de líneas de campo que salen de la misma superficie. Un claro ejemplo de esta propiedad viene representado por las líneas de campo de un imán, donde se puede ver que el mismo número de líneas de campo que salen del polo norte vuelve a entrar por el polo sur, desde donde vuelven por el interior del imán hasta el norte.
Ana Clara Sabbatella, Fabricio Palermo, Natalia aldao. 6to Agronomia 2009