jueves, 21 de octubre de 2010

Cuerpo negro


Un cuerpo negro es un objeto teórico o ideal que absorbe toda la luz y toda laenergía radiante que incide sobre él. Nada de la radiación incidente se refleja o pasa a través del cuerpo negro. A pesar de su nombre, el cuerpo negro emite luz y constituye un modelo ideal físico para el estudio de la emisión de radiación electromagnética. El nombre Cuerpo negrofue introducido por Gustav Kirchhoff en1862. La luz emitida por un c

uerpo negro se denomina radiación de cuerpo negro.



Todo cuerpo emite energía en forma deondas electromagnéticas, siendo esta radiación, que se emite incluso en el vacío, tanto más intensa cuando más elevada es la temperatura del emisor. La energía radiante emitida por un cuerpo a temperatura ambiente es escasa y corresponde a longitudes de onda superiores a las de la luz visible (es decir, de menor frecuencia). Al elevar la temperatura no sólo aumenta la energía emitida sino que lo hace a longitudes de onda más cortas; a esto se debe el cambio de color de un cuerpo cuando se calienta. Lo

s cuerpos no emiten con igual intensidad a todas las frecuencias o longitudes de onda, sino que sig

uen la ley de Planck.

A igualdad de temperatura, la energía emitida depende también de la naturaleza de la superficie; así, una superficie mate o negra tiene un poder emisor mayor que una superficie brilla

nte. Así, la energía emitida por un filamento de carbón incandescente es mayor que la de un filamento de platino a la misma temperatura. La ley de Kirchhoff establece que un cuerpo que es buen emisor de energía es también buen absorbente de dicha energía. Así, los cuerpos de color negro son bueno

s absorbentes y el cuerpo negro es un cuerpo ideal, no existente en la naturaleza, que absorbe toda la energía.

Ley de Planck (Modelo cuántico)

La intensidad de la radiación emitida por un cuerpo negro, con una temperatura  T \, en la frecuencia  \nu  \,, viene dada por la ley de Planck:

I(\nu,T) = \frac{2h\nu^{3}}{c^2}\frac{1}{\exp({h\nu}/kT)-1} o su expresión equivalente

I(\nu,T)\cdot\delta\nu = \frac{2h\nu^{3}}{c^2}\cdot\frac{1}{e^{(h\nu/kT)}-1} \cdot \delta\nu

donde I(\nu,T)\cdot\delta\nu \, es la cantidad de energía por unidad de área, unidad de tiempo y unidad deángulo sólido emitida en el rango de frecuencias entre \nu  \, y \nu + \delta \nu \, ;  h  \, es una constante que se conoce como constante de Planck;  c  \, es la velocidad de la luz; y  k  \, es la constante de Boltzma

nn.

Se llama Poder emisivo de un cuerpo E(\nu, T) \, a la cantidad de energía radiante emitida por la unidad de superficie y tiempo entre las frecuencias \nu  \, y \nu + \delta \nu \, .

E(\nu,T)=\pi \cdot I(\nu,T) = \frac{8\pi h\nu^{3}}{c^3}\frac{1}{\exp({h\nu}/kT)-1}

La longitud de onda en la que se produce el máximo de emisión viene dada por la ley de Wien; por lo tanto, a medida que la temperatura aumenta, el brillo de un cuerpo va sumando longitudes de onda, cada vez más pequeñas, y pasa del rojo al blanco según va sumando las radiaciones desde el amarillo hasta el violeta. La potencia emitida por unidad de área viene dada por la ley de Stefan-Boltzmann.

Ley de Rayleigh-Jeans (Modelo Clásico)

Antes de Planck, la Ley de Rayleigh-Jeans modelizaba el comportamiento del cuerpo negro utilizando el modelo clásico. De esta forma, el modelo que define la radiación del cuerpo negro a una longitud de onda concreta:

B_\lambda(T) = \frac{2 c k T}{\lambda^4}

donde c es la velocidad de la luz, k es la constante de Boltzmann y T es la temperatura absoluta.

Esta ley predice una producción de energía infinita a longitudes de onda muy pequeñas. Esta situación que no se corrobora experimentalmente es conocida como la catástrofe ultravioleta.

Aproximaciones de cuerpo negro

El cuerpo negro es un objeto teórico o ideal, pero se puede aproximar de varias formas:


Cavidad aislada

Es posible estudiar objetos en el laboratorio con comportamiento muy cercano al del cuerpo negro. Para ello se estudia la radiación proveniente de un agujero pequeño en una cámara aislada. La cámara absorbe muy poca energía del exterior, ya que ésta solo puede incidir por el reducido agujero. Sin embargo, la cavidad irradia energía como un cuerpo negro. La luz emitida depende de la temperatura del interior de la cavidad, produciendo el espectro de emisión de un cuerpo negro. El sistema funciona de la siguiente manera:

La luz que entra por el orificio incide sobre la pared más alejada, donde parte de ella es absorbida y otra reflejada en un ángulo aleatorio y vuelve a incidir sobre otra parte de la pared. En ella, parte vuelve a ser absorbido y otra parte reflejada, y en cada reflexión una parte de la luz es absorbida por las paredes de la cavidad. Después de muchas reflexiones, toda la energía incidente ha sido absorbida.

Aleaciones y nanotubos

Según el Libro Guinness de los Récords, la sustancia que menos refleja la luz (en otras palabras, la sustancia más negra) es una aleación de fósforo y níquel, con fórmula química NiP. Esta sustancia fue producida, en principio, por investigadores indios y estadounidenses en 1980, pero perfeccionada (fabricada más oscura) por Anritsu (Japón) en 1990. Esta sustancia refleja tan sólo el 0,16 % de la luz visible; es decir, 25 veces menos que la pintura negra convencional.

En el año 2008 fue publicado en la revista científica Nanoletters un artículo con resultados experimentales acerca de un material creado con nanotubos de carbono que es el más absorbente creado por el hombre, con una reflectancia de 0,045 %

Cuerpos reales y aproximación de cuerpo gris

Los objetos reales nunca se comportan como cuerpos negros ideales. En su lugar, la radiación emitida a una frecuencia dada es una fracción de la emisión ideal. La emisividad de un material especifica cuál es la fracción de radiación de cuerpo negro que es capaz de emitir el cuerpo real. La emisividad depende de la longitud de onda de la radiciación, la temperatura de la superficie, acabado de la superficie (pulida, oxidada, limpia, sucia, nueva, intemperizada, etc.) y ángulo de emisión.

En algunos casos resulta conveniente suponer que existe un valor de emisividad constante para todas las longitudes de onda, siempre menor que 1 (que es la emisividad de un cuerpo negro). Esta aproximación se denomina aproximación de cuerpo gris. La Ley de Kirchhoff indica que en equilibrio termodinámico, la emisividad es igual a la absortividad, de manera que este objeto, que no es capaz de absorber toda la radiación incidente, también emite menos energía que un cuerpo negro ideal.


Aplicaciones astronómicas

En astronomía, las estrellas se estudian en muchas ocasiones como cuerpos negros, aunque esta es una aproximación muy mala para el estudio de sus fotosferas. La radiación cósmica de fondo de microondas proveniente del Big Bang se comporta como un cuerpo negro casi ideal. La radiación de Hawking es la radiación de cuerpo negro emitida por agujeros negros.



Ana Clara Sabbatella 6to agronomia


No hay comentarios:

Publicar un comentario